Sierra Valley Groundwater Sustainability Plan Interconnected Surface Water (ISW)

Sierra Valley GSP

10 May 2021

Outline

01	Existing Available Data
02	Field Evaluation and Verification
03	ISW Identification Approach
04	ISW Monitoring Approach
05	Initial Data Gaps Summary

Balance Hydrologics

What is Interconnected Surface Water (ISW)?

LOSING STREAM THAT IS DISCONNECTED FROM THE WATER TABLE

23 CCR § 351(o) "Interconnected surface water" refers to surface water that is hydraulically connected at any point by a continuous saturated zone to the underlying aquifer and the overlying surface water is not completely depleted.

Disconnected surface water

Connected surface water

Existing Available Data: Monitoring Wells

01

Depth to Groundwater in Monitoring Wells

Average depth to groundwater in the Spring from 2017 to 2020

A 4-year average provides a statistically significant dataset

Depth to Groundwater in Monitoring Wells

Vertical Hydraulic Gradients in Nested Wells

Existing Available Data: National Hydrography Dataset (NHD)

01

NHD Streams, springs, and flowing wells (North)

- Within the groundwater
 - 81 Springs
 - 95 Flowing Wells
 - 844 miles of Streams

NHD Streams, springs, and flowing wells (South)

- Within the groundwater
 - 81 Springs
 - 95 Flowing Wells
 - 844 miles of Streams

Existing Available Data: Summary

- Valley-wide groundwater levels from various time periods, using average spring conditions from 2017-2020
- 7 District Monitoring wells showing vertical hydraulic gradients
- NHD: 176 springs and flowing wells shown, but unverified
- NHD: 844 miles of "blue line" streams in the groundwater basin, but some are diversion ditches

Field Evaluation and Verification

Field Evaluation – flowing wells (Spring 2021)

Yellow Barn Flowing Well (Roen Property)

Filippini Hot Spring (Artesian Well)

Former Hage Ranch (Roen Property)

Field Evaluation – "Blue line" streams (Spring 2021)

Little Last Chance Creek

Field Evaluation – Irrigation canals and ditches (Spring 2021)

Eastside Canal (Roen Property)

Sierra Valley Irrigation Channels (Near Rice Hill)

Field Evaluation – Springs

Springs at sand-clay contact near Dotta Guidici Road

Springs at the contact between andesitic flows and granidiorte off Beckwourth Genesee Road

Field Evaluation – Conditions in Spring 2021

T (deg C): 9.2 C (micro S): 150

Field Evaluation – Summary

Field Evaluation – Summary of observations and preliminary conclusions

Field Summary

- The network of channels and ditches is complex. 1.
- 2. Surface inflows and deliveries play a significant role in supporting valley streams, wetlands, and irrigated pasture, especially in dry years.
- Springs and flowing wells also provide support. 3.
- Springs and flowing wells are limited in the central portions of the valley and more common 4. near the valley margins

Within the groundwater basin

- 61 Springs
- 32 Flowing Wells

365 miles of Streams

Within the groundwater basin

- 61 Springs
- 32 Flowing Wells

365 miles of Streams

ISW Identification Approach

ISW Identification Approach

Approach

- Identify surface water bodies
- Identify where
 groundwater is within
 5-feet of the surface
- Use vertical hydraulic gradient in nested monitoring wells to verify

Most channels are relatively shallow and broad

Sierra Valley Channels (Near Rice Hill)

Hillshade from a USGS 1-meter LiDAR based DEM Survey Date: 07/14/2018 - 08/20/2018

ISW Identification Approach

- Upward (positive) vertical hydraulic gradient indicates areas of potential groundwater upwelling
- Recharge of the shallow aquifer is likely not just from surface water deliveries but also upwelling from the deeper aquifer

Preliminary ISW Identification - DRAFT

- Next step: Refine and combine with GDE
 Mapping
- Decide whether
 shallow water table
 'aquifer'
 interconnectedness
 with surface water
 should be considered
 in GSP and SMCs

- Evidence exists that shallow groundwater can be 'perched' in some places.
- Both shallow and deep groundwater have beneficial users, and therefore both should be included in the monitoring network, with associated SMC

Sierra Valley Groundwa

ISW Monitoring Approach

BalanceHydrologics

ISW Monitoring Approach

Approach #1:

- Identify specific critical ISW reaches 1.
- Identify existing or strategically site new stream gages and monitoring wells to 2. measure horizontal hydraulic gradient (groundwater level)
- Monitor for changes in horizontal hydraulic gradient indicative of increased depletion 3.

Pumping wells \rightarrow

ISW Monitoring Approach

Approach #2:

- Identify critical/significant ISW reaches 1.
- Use existing or install new nested monitoring wells to measure vertical hydraulic gradient 2.
- Monitor for changes or reversals in vertical hydraulic gradients 3.

Pumping wells \rightarrow

ISW Modeling Opportunities

- Calculate ISW depletion rate in modeled surface water nodes (seepage loss, acre-feet/month)
- Are depletion rates significant and unreasonable?

Depletion rate

- Assume ISW depletion in excess of that experienced since 2015 is significant and unreasonable
- □ If lower Minimum Thresholds are established, the GSP has burden of proof to demonstrate no additional significant and unreasonable ISW depletion

Initial Summary of Data Gaps

05

Initial Summary of Data Gaps

- Distribution of confining clay beds and interconnections between the shallow and deep aquifer is not well understood.
- Edges of the basin are lacking in monitoring data

Initial Summary of Data Gaps

- Stage and streamflow data are lacking for wetlands and channels in the center of the valley
- Monitoring wells are lacking near sensitive areas

Questions?

Balance Hydrologics

Balance Hydrologics 12020 Donner Pass Road Truckee, CA 96161 (530) 550 9776

dshaw@balancehydro.com jjacquet@balancehydro.com

4940 **SHALLOW** 4920 Groundwater Elevation, ft 4880 4840 4820 DEEP 4800 2006-12-14 2010-03-28 2012-06-05 2017-11-26 2020-02-04 1998-03-11 1999-04-15 2001-06-23 2003-09-01 2004-10-05 2005-11-09 2009-02-21 2011-05-02 2014-08-14 002-07-28 2008-01-18 2013-07-10 015-09-18 2018-12-31 996-01-01 997-02-04 000-05-19 016-10-22

DMW 1 Nested Monitoring Wells

Alternating seasonally upward and downward vertical gradient prior to switching to mostly downward gradient in Spring 2007

DEEP froundwater Elevation, ff 4950 4948 4948 **INTERMEDIATE SHALLOW**

DMW 2 Nested Monitoring Wells

Consistent upward vertical gradient

DMW 3 Nested Monitoring Wells

- DMW-3 deep is often flowing and can not be measured
- Consistent upward vertical gradient

DMW 4 Nested Monitoring Wells

Consistent downward vertical gradient

LOSING STREAM

Flow direction

DMW 5 Nested Monitoring Wells

Consistent upward vertical gradient

DMW 6 Nested Monitoring Wells

Seasonally downward gradient in the spring and becoming flat in the late summer

